Run (tidy) Ecological Inference Estimation and Simulation
Usage
ei_(
data,
x,
t,
n,
Zb = NULL,
Zw = NULL,
id = NA,
erho = c(0.5, 3, 5, 0.1, 10),
esigma = 0.5,
ebeta = 0.5,
ealphab = NA,
ealphaw = NA,
truth = NA,
simulate = TRUE,
ndraws = 99,
nsims = 100,
covariate = NULL,
lambda1 = 4,
lambda2 = 2,
covariate.prior.list = NULL,
tune.list = NULL,
start.list = NULL,
sample = 1000,
thin = 1,
burnin = 1000,
verbose = 0,
ret.beta = "r",
ret.mcmc = TRUE,
usrfun = NULL
)
Arguments
- data
data where `x`, `t`, `total`, `Zb`, `Zw` are found
- x
<[`data-masking`][dplyr_data_masking]> column of subgroup proportions in data
- t
<[`data-masking`][dplyr_data_masking]> column of turnout in data
- n
<[`data-masking`][dplyr_data_masking]> column of total in data
- Zb
<[`data-masking`][dplyr_tidy_select]> columns of covariates in data
- Zw
<[`data-masking`][dplyr_tidy_select]> columns of covariates in data
- id
<[`data-masking`][dplyr_data_masking]> column of unique ids in data
- erho
The standard deviation of the normal prior on \(\phi_5\) for the correlation. Numeric vector, used one at a time, in order. Default `c(.5, 3, 5, .1, 10)`.
- esigma
The standard deviation of an underlying normal distribution, from which a half normal is constructed as a prior for both \(\breve{\sigma}_b\) and \(\breve{\sigma}_w\). Default \(= 0.5\)
- ebeta
Standard deviation of the "flat normal" prior on \(\breve{B}^b\) and \(\breve{B}^w\). The flat normal prior is uniform within the unit square and dropping outside the square according to the normal distribution. Set to zero for no prior. Setting to positive values probabilistically keeps the estimated mode within the unit square. Default\(=0.5\)
- ealphab
cols(Zb) x 2 matrix of means (in the first column) and standard deviations (in the second) of an independent normal prior distribution on elements of \(\alpha^b\). If you specify Zb, you should probably specify a prior, at least with mean zero and some variance (default is no prior). (See Equation 9.2, page 170, to interpret \(\alpha^b\)).
- ealphaw
cols(Zw) x 2 matrix of means (in the first column) and standard deviations (in the second) of an independent normal prior distribution on elements of \(\alpha^w\). If you specify Zw, you should probably specify a prior, at least with mean zero and some variance (default is no prior). (See Equation 9.2, page 170, to interpret \(\alpha^w\)).
- truth
A length(t) x 2 matrix of the true values of the quantities of interest.
- simulate
default = TRUE:see documentation in
eiPack
for options for RxC ei.- ndraws
integer. The number of draws. Default is 99.
- nsims
integer. The number of simulations within each draw. Default is 100.
- covariate
see documentation in
eiPack
for options for RxC ei.- lambda1
default = 4:see documentation in
eiPack
for options for RxC ei.- lambda2
default = 2:see documentation in
eiPack
for options for RxC ei.- covariate.prior.list
see documentation in
eiPack
for options for RxC ei.- tune.list
see documentation in
eiPack
for options for RxC ei.- start.list
see documentation in
eiPack
for options for RxC ei.- sample
default = 1000
- thin
default = 1
- burnin
default = 1000
- verbose
default = 0:see documentation in
eiPack
for options for RxC ei.- ret.beta
default = "r": see documentation in
eiPack
for options for RxC ei.- ret.mcmc
default = TRUE: see documentation in
eiPack
for options for RxC ei.- usrfun
see documentation in
eiPack
for options for RxC ei.
Examples
data(sample_ei)
dbuf <- ei_(sample_ei, x, t, n)
#> ℹ Running 2x2 ei
#> ℹ Maximizing likelihood for `erho` = 0.5.
#> ℹ Running 2x2 ei
#> ℹ Maximizing likelihood for `erho` = 3.
#> ℹ Running 2x2 ei
#> ℹ Maximizing likelihood for `erho` = 5.
#> ℹ Running 2x2 ei
#> ℹ Maximizing likelihood for `erho` = 0.1.
#> ℹ Running 2x2 ei
#> ✔ Running 2x2 ei [2ms]
#>
#> ⠙ Beginning importance sampling.
#> ✔ Beginning importance sampling. [1.3s]
#>